Differentiation and graphs

The gradient of a curve is given by the derivative of the equation of the curve.

The second derivative of a function f(x), given by f''(x), and the second derivative of an equation y, given by dΒ²y/dxΒ², can be found by differentiating the function and the equation twice. For graphs, the second derivative represents the rate of change of the gradient.

At the stationary points and points of inflection of a graph, the derivative of the function of the equation of the graph is 0. Therefore, these points can be found by finding the derivative of the function, equating it to 0 and solving for x.

The maxima of a graph are the high points of the graph at which the slope is zero. At maxima, the second derivative of the function is less than 0. The minima of a graph are the low points of the graph at which the slope is zero. At minima, the second derivative of the function is more than 0.

A function f(x) is said to be increasing at point x if f'(x) > 0 or decreasing at point x if f'(x) < 0.

#0

Loading ...

#0

Loading ...

Image.png

Have you found the questions useful?

Sign up to access 50% more of them for free πŸ˜€

StudySquare